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Geographic variation and genetic relationships in
populations of the Androniscus dentiger complex from
Central Italy (Isopoda, Oniscidea, Trichoniscidae)

Gabricle Gentile and Giuliana Allegrucci *

SUMMARY

Amdrenizcus desiger is a terrestrial isopod disiibuted from Geem Britain 1o North Af-
rica, inhabiting humid edafic environments, superficial undergrownd compartments and boih
matural and anificial caves. In this study alloeyme data have been used 1o investigate the peo-
graphic vamaton and the genetic relationships of several populations of Adeariper from
Central luly, wsing a8 oulgroups populations from four congeneric species, Aomfoiagns,
Aclrsubtervanens, Aspeloeanmn, and A, degener, Multivariate analysis of A, deariger allele
frequencies indicates the exisience of a groap of populations (group A) distriboted in o wide
geopraphic area which are genetically slighily differentisted, and several populations (arbi-
trarily defined as group B) which show differentiation levels comparable w those observed
between the morphalogically well differentisted species, The low walley of the river Tiber
seems W et as an effective geographic barmier between the populations from group A and the
remaining ones. The genetic divergence between popolations within the group A scems o
have w recent origin. This is sugeested by the low genctic distances and helerozygosity values
within the group A, and by the very low number of prvate allzles oecurring in this group,
The high degree of intraspecific and interspecific genetic differentiation is nol consistent with
the levels of morphological differemiation traditionally used 1o distinguish different specics
within this genus. On the whole, these data suggest that A, deasiger might be considered as o
complex of crypticfsihling species,

INTRODUCTION

The terrestrial isopod Andremiseus dentiger inhabits, as other congen-
eric species. humid edafic environments, superficial underground compart-
ments, and both notural and artificial caves. Usually, in Trichoniscidae,
highly hygrophilic habits represent a strong constraint for dispersal. Evi-
dence of this phenomenon is the high number of taxa (both at the species
and genus level) which are geographically differentiated. and are also nar-
row endemics. A.demtiger, unlike other congeneric species and other
Trichoniscidae, is widely distributed. It occurs in Great Britain, Central
Europe, mainland Ialy, Sicily, and North Africa and its range has been
considered to be in a phase of active and passive (by man) expansion {Van-
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del, 19603, However, A. dentiger does not occur in Corsica {Tain and Fer-
rara, 1996}, Tuscanian archipelagos and in some localities along the Tus-
canian coast (Taiti and Ferrara, 1980) where potendally colonizable envi-
ronments occur. Moreover, this species is missing in many suitable caves
within its range (Gentile, unpublished dua).

In o previous study the levels of gene Now among populations of A, denri-
gerin Central Italy have been investigated using different N estimators. The
very low levels of gene flow reported, even between neighboring populations,
suggested that nearly all the populations studied have isolated gene pools (Gen-
tile and Sbordoni, 1998). In this paper we discuss the geographic variation and
the genetic relationships among the same A. dentiger populations, using as out-
groups populations from four species belonging to the same genus,

MATERIAL AND METHODS

Twenty eight populations of A, dentiger from Central Ttaly have been
studied, including cave and surface populations. Six populations taxonami-
cally assigned to four different species (A, calefvagus, A, orll swbterranens,
A, spelacorim and A, degener) were used as oulgroups. These species are
morphologically well differentiated (Vandel, 12607, and occur only in the
North-Eastern ltalian Prealpine mountains, Some of these species could
also be found in syntopy. In these cases, no evidence of hybridization could
be highlighted. In Table 1 the populations studied are reported. Cave and
surface populations are indicated with a three letter symbol in upper and
lower cases Ly pes, respectively.

Genetic variation was investigated using allozyme electrophoresis on
cellulpse acetate gels. The following enzymes were assayed: Ada, Afdo, Ca,
Digr, Me, Apl, Pem, PGal, Glpd, Gpi, Got, fdh, Mdl, Mpi, Pep, Pk, for
overall 19 gene loci scored. Details of the protocols used and allele fre-
quencies are reported in Gentile and Shordoni (1998).

Heterozygosity, Nei's (1972) and Reynolds” (Reynolds et al., 1983)
genetic distances were calcolated using GEN-SURVEY (Vekemans and Le-
febvre, 1997). We used the Nei's and Reynolds® indexes to provide more
accurate dating of events of divergence in different evolutionary contexts,
We used Nei's (1975) relationship =D, where ¢ is the time of divergence,
& (the substitution rate) is equal to 5%10° and £ is the Neji's distance. Rey-
nalds” index, which assumes divergence 1o be caused only by genetic drift,
was used in a context of short-term evolution. We applied the formula
t=D/2N, where ¢ is the time of divergence, N the effective population size
and 2 1% the Reynolds' coefficient. We estimated an average population

size ranging from 500 to 5.000 individuals.
Tahle | — Sample sites
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Statistical significance of heterozygosity estimates and genetic dis-
tances between and within groups of populations was tested by 1000 boot-
strap cycles over populations {Van Rossum et al., 1997; Vekemans and Le-
febvree, 1997) The program GENETIX ver. 3.0 (Belkhir et al., 1996} was
used to st the null hypothesis D=0 for each pair of populations.

An ordination of A dertiger populations was carried out by means of
the Factorial Correspondence Analysis carried out on allele frequencies
(FCA, Benzeori et al, 1973). A geographic contour map was obtained by
interpolating the scores of the first axis of the Factorial Correspondence
Analisys (Cavalli-Sforza et al,, 1994).

The neighbor-joining (NJ tree, Saitou and Nei, 1987) method was ap-
plied to a matrix of genetic distances (Nei, 1972). Robustness of each node
was evaluated by bootstrapping allele frequencies 1000 times, using the
program SEQROGT in PHYLIP 3.57 (Felsenstein, 1995),

We also carried oul parsimony analyses on allozyme data. Allozymes
were recoded considering a locus as a character, and a combination of al-
leles occurring at that locus as a state (Mabee and Humphries, 1993). In-
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stead of ordering the character states and imposing a specific pathway, we
considered all transformations (o be possible. In a stepmatrix, a cost o
every possible transformation was assigned by assuming that each zain or
lass of an allele equals ane evolutionary step. We used A5AP 1.5 (Thumtort
and Sampson. personal communication} to recode allozyme data according
to the procedure assessed in Mardulyn and Pasteels (1994). Most-par-
simoniues (MP) trees were denved by the hewristic scarch as implemented
in PAUF 3.1.1 (Swofford, 1993), Ten random replicates of a heuristic search
were performed. The options random and rree-bisection-reconnection
{TBR) were used for stepwise addition and branch swapping proceduores,
respectively. The mMP tree and the shorest trees supporting alternative
phylogenetic hypotheses were compared using Templeton’s (19837 test, as
detatled in Larson (1994),

RESULTS

Figure 1 shows the results of the Factorial Correspondence Analysis
carried out on allele frequencies of the 28 populations of A.dentiger, The
first axis which explained 24.5% of variance allowed the discrimination
between two major groups: group A, including populations distributed in o
wide area ranging from the Apennines of Tuscany and Marches to the allu-
vial plains of Tuscany and Latium, and the group B including the remaining
populations. The second axis (13%) clearly separates STI and PIA popula-
tions from all the others, while the third axis (10.2%) discriminated popula-
tions DVL, PIA, SUB and CHL The second and third axis indicated that the
Apennines populations do not form an homogeneous group.

Alternative alleles and a high number of private alleles occurred in
most loci. In the Figure 2 the percentage of alleles which are shared by an
increasing number of populations (represented by histograms) 15 reported
logether with their average frequency (represented by line). More than 409
of all alleles scored are shared by o maximum of three populations, These
alleles showed an average frequency equal to 0.4,

Only two private alleles occurred in the group A. while 11 private al-
leles were found in the group B, Nearly all the alleles shared only by two
ane three populations were in zroup B,

Mean heterozygosity per population is reported in Table 2. Average het-
erozygosity estimates between and within groups A und B are reported in Ta-
bles 3a and 3b. We did not observe a statistically significant difference in
mean heterozygosity between cave and surface populations. However, if
groups A and B were analyzed separately, heterozyeosity levels were stutisti-
cally difterent between cave and surface populations within the group B.
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Fig. | = Factorial Correspondence Analysis on allele frequencies at 18 polymorphic loci in A
densiper. The first three axis are represemed.

Mei's penetic distances are reported in the Appendix. Genetic distances
between and within groups A and B are summarized in Tables 3 and 4.
Within A, denriger intraspecific genetic distance values between popula-
tions are generally high, with an average of 0.493 = 0.013. The genctic dis-
tance between group A and group B is very high (£2=0.670; p=0.000).

Interspecific distunces ranged from 0.3 1o 1,532, with a0 mean of 0.749
= 0019 A cfr. subrerranens has the smallest distance value from
Adentiger (D=0L3TR20.027), whercas A, degener has the highest one
(D=1.09340.0400, Average 2 values from A. demtiger and the two remain-

ing species, A calcivagns and A spelacoren, are (00680200020 and
0.683+0.023, respectively.

51
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The topology of the NI tree obtained is shown in Fig3a. The tree is ar-
bitrarily rooted at A, degener (VIL), the most differentiated species, A. den-
tiger splits into the groups A and B, being divided by A. calcivagus. A, cal-
civagus is the only robust eluster of the whole tree (hootstrap values > 70%).
The remaining two species, A. cfr. subterranens and A. spefacorum, link to-
gether and are nested with group B.

Tuble 2 — Genetic varability an 19 loci in the 34 populations of Audronisens,

KMean no. Percantage Moan heterozygosity

of alleles ol lori
Population per locus polymarphic{*} Observad Expoctod
Andronlscus denliger
EP 168201 26,3 0,069 £ 0.024 0069 = 0,025
MAG 1.7=01 431 0123 2 0.034 0.138 = 0.038
TER 1.7 =01 26,3 0147 + 0.051 0123 = 0,040
£an 1.4 =001 211 0087 2 0.035 0.080 = 0.037
OMNF 1301 15.8 0.072 + 0,033 0084 = D034
TOS 1.5 = 01 26,3 0.084 = 0.032 0.083 = 0.032
mon 15041 36.8 0100 £ 0037 0,904 = 0,036
NER 1.6 = 041 36.8 0,101 = 0.037 0.108 = 0.037
val 1401 421 0094 + 0,030 0,093 £ 0.0
leg 1.5 =01 36,8 0101 = 0,032 0,111 = 0,036
MEZ 15201 26.3 0.088 £ 0,032 0.089 = 0.033
DWL 1.4 = 0. 15,8 0.068 = 0,030 0.066 £ 0.028
TOM 1.2+0. 15,8 0062 £ 0,035 0.058 = 0.033
suUe 1.7 =02 52,6 0.158 = 0.043 0.16% = 0.047
ORS 1.5+0.1 KiK 0,059 £ 0,028 0101 £ 0,034
FlA 1.5£04 421 0.130 = 0.037 0,161 = 0.043
RIF 1.3 £01 211 0072 = 0,040 0,066 £ .01
CHI 1.3 =00 211 0.087 = 0040 0.0B3 = 0.037
vel 1.8+0.2 a7.4 068 = 0042 3169 £ 0.043
wig 150 316 0.062 = 0.018 0.062 = 0.018
mnal 150 358 0.125 = D.OID 0,119 £ D.036
&T1 1.3 0 10,5 0.028 = 0.018 0027 = 0.016
FIL 15201 26,3 0,062 = 0,021 0068 £ 0.023
WEr 1.7+02 26,3 0115 = 0040 0.113 + 0.040
pop 1.5 0.1 211 QU108 = 0,044 0.104 = 0.041
fua 1.6=02 i 0118 = 0040 0127 £ 0.044
ant 1.7202 36,8 0,041 20043 0.158 = 0.048
TRV 1602 el 0,120 = 0.0 0,132 £ 0.043
Androniscus calcivagus
BOT 15201 211 0084 = 0040  0.072 £0.033
MM 2002 474 0151 £ 0036 0.178 £ 0.045
LAG 16200 421 012520038 0127 = 0.041
Androniscus cir. sublerraneus
Va2 14201 211 D0ST = 0021 0060 £ 0.027
Androniscus spelaearum
POL 14 =01 28,3 0,085 = 0.040  0.097 = 0.037
Androniscus degener
W1 1500 3E 0066 =0020 0062 = 0.018

{*1 A locus is considered palymorphic if the frequency of the most commaon allele does nol excesd (R4S
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P, (allele frequency) (% of alleles shared by 7 populations) nr.Fn1 -
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Fig. 2 = Genetic differentiation in Androniscus dentiger. Bars indicate the percentage (ndn) of
alleles (n=6T alleles scoredp shared by an increasing number of populations (6, up o 28
Whiskers represent standard ermor of average Trequency (pf) of alleles shared by populations
ot each £ classes.

The parsimony analysis produced 112 equally parsimonious trees
{length=252). The MP tree is reported in Figure 3b. It is also rooted at A, de-
gener (VI1), and shows that A, demiger splits into two different groups of
populations, mainly corresponding to the groups A and B obtained by FCA,
and the NI tree. Groups A (plus SPI) and B are separated by the insertion af A.
cafcivagus and A, spelacornm. A. cfr. sublerranens is nested with group B,
We used Templeton's (1983) test to determine whether we could reject the
hypothesis of the monophyletic origin of A. demtiger. We compared the MP
tree to the most parsimonious tree obtained by forcing the monophyly of A
dentiger, The tree with A, denriger monophyletic required 5 steps more than
the MP tree. However, it was not significantly different from the MP tree,

DISCUSSION

Geographic variation and evolutionary patterns

Multivariate analysis (fca) of allele frequencies {Fig. 1) pointed out the
existence of at least two groups of populations. The populations belonging 1o
group A are strongly divergent from the remaining ones {group B). In the
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South, the low valley of the river Tiber divides the two groups and might have
represented 4 notable barrier 1o gene flow, Interestingly, the Tiber valley also
represents a geographical barrier between populations belonging to the cave
crickets Dolichopoda laetittne-genicidate complex (Cesaroni et al., 1997)

Groups A and B show different geographical distribution an even very
different evolutionary patterns. In group A the number of private alleles is low,
suggesting that mutition did not play an important role in the evolutionary
process within this group, Average genetic distances (Nei's index) within
group A (Tables 3a.b; 43 suggest that the times of divergence between most of
the A. dentiger populations within group A are very recent. The Reynolds” co-
efficient relates the divergence times within group A to a time-span ranging
between 17,000 and 1,700 years ago. This estimate would comespond to the
wide expansion in Central Italy of the mesophilic forests, which represent the
main routes for dispersal of A. denriger. This expansion started at the begin-
ning of the Holocene (14,000 years ago) until the present (Magri and Follieri,
1992}, after a long period (300000 years) when mesophilic forest environ-
ments oceurred in very few and short periods, and were limited o very narrow
arcas (Follieri et al,, 1993y This scenario may explain the absence of A, den-
tiger in the whaole of the tuscanian archipelagos and in the wscanian coastal
mentains (Tait and Ferrara, 19807, which were connected with the mainland
only in the Tast 10000 yeurs {Lonza, 1984).

Figure 4 shows a geographic representation of the genetic variation ob-
served. The darkest area groups the most similar populations belonging to
group A_ It might be the possible area from which propagules from a limited
number of populations started the colonization of the alluvial lands of Tus-
cany. Genetic drift might be responsible for the decreased genetic variability
within new populations, where alleles which are rare in the source popula-
tions are less likely 1o be represented. Consistently with the hypothesis of a
recent colonization, average genetic distance among surface populations
within group A is comparable with the value obiained for cave ones (Tables
3ah.

Mutation seems to be one of the main factors shaping the evelutionary
pattern within group B. In this group in fact, the number of private alleles is
high, The wide range of genetic distances within group B suggested that most
of the splitting events within this group seem to have occurred in a wide time-
span, which can be dated back to climatic shifts and marine transgressions
during the Pliocene-Fleistocene glaciations, Extinctions and recolonizations
during several glaciation episodes in the last Pliocene and during the Quater-
nary could explain both the observed lack of A, dentiger in many potentially
colonizahle habitats within its area and the varying degrees of genetic differ-
entiation observed in the group B, Since these processes are much older than
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the colonization by populations of group A, we would expect the populations
from group B to have partly rebuilt their genctic variability. Indeed, we did
observe a statistically significantly higher heterozygosily in the populations
from group B than from group A (Mann-Whitney Z=2.07; p<<0.03 at two-
tailed test). Furthermore, surface and cave populations of group B are also dif-
terentisted. Within group B, surface populations show a higher level of aver-
age heterozygosity than the value observed in the cave ones, which is in e
comparable 1o the value observed in group A (Tables 3a,b). So, in group B,
increasing genctic variability occurred in surface populations only, while cave
populations seem to be influenced by the effects of genetic drift or by some
form of stabilizing selection. This scenario is consistent with the genetic dis-
tance values observed, In fact, group A and B are genetically distinct (Table
43, and in group B average genetic distance among cave populations is much
higher than the value observed for surface ones (Tables 3a,b).

The seographical patterns of alleles shared by two and three populations
might he interpreted as a trace of an ancestral polymorphism reduced by ge-
netic drift due to exunction dynamics (Gentile and Sbordoni, 1998}, In fact,
the higher the number of populations sharing the same allele, the mon: un-
likely it is that this allele arose by recurrent mutation in those populations.
Populations sharing these alleles are separated by geographic distances up to
250 Km, suggesting that extinction events might have occwred over a wide
geographic scale.

Table 3a -~ Level of populmion diversity within grovps A and B Average genetic distonces
(Meigg) and observed heterozvposity within cave and surface populations.

Cave [A) Surface {A) Cave (B} Surface {B)
O [Nei ) 0,141 0105 0.485 0186
H, 082 008 0086 0129

Table 3b — Differences {A) between levels of populmion diversity within groups A and B:
The upper values is the nangulor matris are AD; the lower ones are AH,.

Cave (A) Suraca [A) Cave (B)
Surface (A) 0,036 ns
0,008 s
Cava (B) 0,324 °° Q.30 =~
0015 ns 0.007 ns
Surlace (B) 0,045 ns 0.081 ¢ Q2va s
0.04a7 " 0040 ** 0.033°

'} pia=0) <005, ) fla=3] <001



i) GABRIELE GENTILE and GIULIANA ALLEGRUCCT

Table 4 — Level of population differemiotion berween groups A and B: Average genetic dis-
tunees (Mei-w ) between cave amd surface populaiions

Cave (A) Surface [A) Cava (B)
Surface (A} 0. 1168 ns
Cave (B (1 | VE-Y B 0371
Surlace (B) 0524 ** 0633+

(") ol ] 005 () B{D=0] <001

Cenetic relationships

The genetic distances between populations morphologically belonging to
A.demtiger show a wide spectrum of values, including many values higher
than 1. Thorpe (1983} suggested that genetic distance values higher than
(0,163 between allopatric populations indicate that they belong to different
species. [f we accept this suggestion, most populations of A, denriger are dif-
ferent species. As already pointed out (Lessios and Weinberg, [994) there is
no theoretical reason to consider the cut-off value indicated by Thorpe as an
unambiguous threshold for speciation. The inclusion of species morphologi-
cally differentiated as outgroups allows us to calibrae the amount of genetic
divergence that can be revealed by alloxyme data, providing a “within taxon™
standard which is useful o establish a threshold for speciation. Most of the
average genetic distances between Androniscns species are of the sume order
of magnitude as many distances between populations of A. dentiger,

In contrast with the high degree of genetic divergence, morphological
differentiation in A.demtiger does not show a degree of geographic variation
usetul lo study the systematic relwtionships among populations (Vandel,
1960; Gentile, 1994},

In the last twenty years the number of cryptic/sibling species which have
been claimed (o ocour in various taxa is greatly increased. Genetie, ecological
and behavioral data are often used and sometimes combined to test the actual
differentiation between putative species. In particular, mast genetic studies of
cave dwelling isopods, both aguatic and terrestrial, revealed the occurrence of
high genetic distance values between morphologically indistinguishable
populations as reported from studies on Typlfocirefana (Caccone et al.,
19863, Stenaselfns (Messana et al., 1993), Orfrantsens (Cobolli Shordoni et
al., 1995) and Trichoniscws (Cobolli Shordoni et al., 1997} Since it has been
possible 1o evidenciate that reproductive isolation may occur in allopatry as a
by-product of a high degree of genetic differentiation (Coyne and Orr, 19897,
it would appear reasonable that speciation events may occur mare frequently
than has been though. The high levels of genetic divergence we observed
suggest that A, denriger could be probably considered as a complex of cryp-
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ticksibling species, We could identify two genetically differentiated groups of
populations (A and B). Additionally, in the group B, most of genetic distances
ohserved between populations are much higher than the values reported for
morphologically distinguishable species. However it remains to be assessed
how many species A. dentiger complex might include. This appears 1o be a
difficult task, since breeding cxperiments carried out on other Peracarids
showed that the paradigm “high genetic distance - high degree of repro-
ductive isolation™ does not hold always (Scheepmaker, 1990),

N Tree

s

wir

Wik pyg

Fig, 3 — Genetic relationships between Andronfscns species, o) Neighbor-join (81) tree. The
number al the nodes of K1 s the number of mes the cluster al the right of the acde occurs oul
of 100 bootstrap repetitions, Cnly hoatstrap values higher than 50% are shown, b) Maximum
parsimony tree (ME)L The number at the nodes of s is the number of fimes (percent) that the
eluster at the right of the node oocurs out of afl most parsimonious rees found, Slashes repre-
sent the changes of character states berween fwo contiguous nodes.

Bath the N1 tree, and the parsimony analysis are in agreement with the
multivariate analysis {FCA). However, neither NI or MP tree (Fig. 3) is help-
ful to assess the genetic relationships between the different species of An-
dronisens studied. They suggest that A. denviger is polyphyletic. However,
bootstrapping and Templeton's test do not support the polyphyletic origin
af A. denriger, which indeed appears 10 be unreasonable even ram a bio-
zeographical point of view. In fact, among all the Androniscus (Demtigera-
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Fig, 4 — Geographic variation of allele frequencies in A, destiper of Central Ialy. The contour
miap has been obtained by interpolating the values of the coordinates on the first axs after o
Factorial Comespondence Analysis. Each tone of color corresponds 1o an imcrement equal w 0.2
o Lhe Tirst axax. The dork area identifies the growp A, while groop B s represented by the white
arca | Redesigned from Gentile, |995),

nivcus) species, only A dentiger occurs in Central Italy, the range of the
other congeneric species being strictly limited 1o the North and North-
Eastern Prealps. The difficulty to assess robust genetic relationships be-
tween populations and species of Andronisens might be explained by the
high degree of genetic differentiation found,

Further investigations by using a better addressed genetic marker will
probably be necessary to investigate the phylogenetic relationships among
the species belonging to this genus,
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